Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 1879-1882, 2012.
Article in Chinese | WPRIM | ID: wpr-500477

ABSTRACT

Objective: To study the antibacterial efficacy of Bixa orellana leaves and deseeded fruit capsule extracts against both Gram positive and Gram negative bacteria. Methods: The antibacterial activity of the ethanolic, methanolic, acetone and dimethyl sulphoxide extracts of B. orellana were tested against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis,Bacillus cereus and Staphylococus aureus by disc diffusion method. Results: The antibacterial activity of leaf was more pronounced even at low concentrations and fruit extracts exhibited the same at relatively higher concentrations. Only DMSO extract of seeds showed growth inhibition of S. aureus, B. subtilis, B. cereus, and P. aeruginosa. Conclusions: The present study suggested that the leaves and deseeded capsule extracts of B. orellana possess significant antibacterial activity thereby providing substantial support for the ethanobotanical applications of this plant.

2.
Electron. j. biotechnol ; 12(2): 8-9, Apr. 2009. ilus, tab
Article in English | LILACS | ID: lil-551369

ABSTRACT

The aim of this review is to critically analyze the role of silver nitrate (AgNO3) in modulating plant growth and development. In recent years, basic studies on ethylene regulation opened new vistas for applied research in the area of micro-propagation, somatic embryogenesis, in vitro flowering, growth promotion, fruit ripening, and sex expression. Silver nitrate has proved to be a very potent inhibitor of ethylene action and is widely used in plant tissue culture. Few properties of silver nitrate such as easy availability, solubility in water, specificity and stability make it very useful for various applications in exploiting plant growth regulation and morphogenesis in vivo and in vitro. Silver ion mediated responses seem to be involved in polyamines, ethylene- and calcium- mediated pathways, and play a crucial role in regulating physiological process including morphogenesis. The molecular basis for regulation of morphogenesis under the influence of silver nitrate is completely lacking. This review compiles published reports of silver nitrate-mediated in vitro and in vivo studies and focuses on fundamental and applied aspects of plant growth modulation under the influence of silver nitrate.


Subject(s)
Silver Nitrate/administration & dosage , Silver Nitrate/agonists , Plants/growth & development , Plants , Plants/metabolism , Ethylenes/administration & dosage , Ethylenes/antagonists & inhibitors , Ethylenes/therapeutic use , Genetic Engineering , Morphogenesis
SELECTION OF CITATIONS
SEARCH DETAIL